\(\int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx\) [577]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 363 \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\left (3 a^2 A b-2 A b^3-5 a^3 B+4 a b^2 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{b^3 \left (a^2-b^2\right ) d}-\frac {\left (9 a^3 A b-12 a A b^3-15 a^4 B+16 a^2 b^2 B+2 b^4 B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 b^4 \left (a^2-b^2\right ) d}+\frac {a^2 \left (3 a^2 A b-5 A b^3-5 a^3 B+7 a b^2 B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{(a-b) b^4 (a+b)^2 d}-\frac {\left (3 a A b-5 a^2 B+2 b^2 B\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {a (A b-a B) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} (b+a \sec (c+d x))} \]

[Out]

-1/3*(3*A*a*b-5*B*a^2+2*B*b^2)*sin(d*x+c)/b^2/(a^2-b^2)/d/sec(d*x+c)^(1/2)+a*(A*b-B*a)*sin(d*x+c)/b/(a^2-b^2)/
d/(b+a*sec(d*x+c))/sec(d*x+c)^(1/2)+(3*A*a^2*b-2*A*b^3-5*B*a^3+4*B*a*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2
*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/b^3/(a^2-b^2)/d-1/3*(9*A*a
^3*b-12*A*a*b^3-15*B*a^4+16*B*a^2*b^2+2*B*b^4)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1
/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/b^4/(a^2-b^2)/d+a^2*(3*A*a^2*b-5*A*b^3-5*B*a^3+7*B*a*
b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))*cos(d*x+
c)^(1/2)*sec(d*x+c)^(1/2)/(a-b)/b^4/(a+b)^2/d

Rubi [A] (verified)

Time = 1.24 (sec) , antiderivative size = 363, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.303, Rules used = {3039, 4115, 4189, 4191, 3934, 2884, 3872, 3856, 2719, 2720} \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {a (A b-a B) \sin (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}-\frac {\left (-5 a^2 B+3 a A b+2 b^2 B\right ) \sin (c+d x)}{3 b^2 d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)}}+\frac {\left (-5 a^3 B+3 a^2 A b+4 a b^2 B-2 A b^3\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 d \left (a^2-b^2\right )}+\frac {a^2 \left (-5 a^3 B+3 a^2 A b+7 a b^2 B-5 A b^3\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b^4 d (a-b) (a+b)^2}-\frac {\left (-15 a^4 B+9 a^3 A b+16 a^2 b^2 B-12 a A b^3+2 b^4 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b^4 d \left (a^2-b^2\right )} \]

[In]

Int[(A + B*Cos[c + d*x])/((a + b*Cos[c + d*x])^2*Sec[c + d*x]^(5/2)),x]

[Out]

((3*a^2*A*b - 2*A*b^3 - 5*a^3*B + 4*a*b^2*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/
(b^3*(a^2 - b^2)*d) - ((9*a^3*A*b - 12*a*A*b^3 - 15*a^4*B + 16*a^2*b^2*B + 2*b^4*B)*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*b^4*(a^2 - b^2)*d) + (a^2*(3*a^2*A*b - 5*A*b^3 - 5*a^3*B + 7*a*b^2*B
)*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/((a - b)*b^4*(a + b)^2*d) -
 ((3*a*A*b - 5*a^2*B + 2*b^2*B)*Sin[c + d*x])/(3*b^2*(a^2 - b^2)*d*Sqrt[Sec[c + d*x]]) + (a*(A*b - a*B)*Sin[c
+ d*x])/(b*(a^2 - b^2)*d*Sqrt[Sec[c + d*x]]*(b + a*Sec[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3039

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(
d + c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3934

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4115

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[b*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(
a*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*
x])^n*Simp[A*(a^2*(m + 1) - b^2*(m + n + 1)) + a*b*B*n - a*(A*b - a*B)*(m + 1)*Csc[e + f*x] + b*(A*b - a*B)*(m
 + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b
^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] && ILtQ[n, 0])

Rule 4189

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 4191

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {B+A \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (b+a \sec (c+d x))^2} \, dx \\ & = \frac {a (A b-a B) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} (b+a \sec (c+d x))}+\frac {\int \frac {\frac {1}{2} \left (-3 a A b+5 a^2 B-2 b^2 B\right )-b (A b-a B) \sec (c+d x)+\frac {3}{2} a (A b-a B) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (b+a \sec (c+d x))} \, dx}{b \left (a^2-b^2\right )} \\ & = -\frac {\left (3 a A b-5 a^2 B+2 b^2 B\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {a (A b-a B) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} (b+a \sec (c+d x))}-\frac {2 \int \frac {-\frac {3}{4} \left (3 a^2 A b-2 A b^3-5 a^3 B+4 a b^2 B\right )-\frac {1}{2} b \left (3 a A b-2 a^2 B-b^2 B\right ) \sec (c+d x)+\frac {1}{4} a \left (3 a A b-5 a^2 B+2 b^2 B\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (b+a \sec (c+d x))} \, dx}{3 b^2 \left (a^2-b^2\right )} \\ & = -\frac {\left (3 a A b-5 a^2 B+2 b^2 B\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {a (A b-a B) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} (b+a \sec (c+d x))}-\frac {2 \int \frac {-\frac {3}{4} b \left (3 a^2 A b-2 A b^3-5 a^3 B+4 a b^2 B\right )-\left (\frac {1}{2} b^2 \left (3 a A b-2 a^2 B-b^2 B\right )-\frac {3}{4} a \left (3 a^2 A b-2 A b^3-5 a^3 B+4 a b^2 B\right )\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{3 b^4 \left (a^2-b^2\right )}+\frac {\left (a^2 \left (3 a^2 A b-5 A b^3-5 a^3 B+7 a b^2 B\right )\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{b+a \sec (c+d x)} \, dx}{2 b^4 \left (a^2-b^2\right )} \\ & = -\frac {\left (3 a A b-5 a^2 B+2 b^2 B\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {a (A b-a B) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} (b+a \sec (c+d x))}+\frac {\left (3 a^2 A b-2 A b^3-5 a^3 B+4 a b^2 B\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 b^3 \left (a^2-b^2\right )}-\frac {\left (9 a^3 A b-12 a A b^3-15 a^4 B+16 a^2 b^2 B+2 b^4 B\right ) \int \sqrt {\sec (c+d x)} \, dx}{6 b^4 \left (a^2-b^2\right )}+\frac {\left (a^2 \left (3 a^2 A b-5 A b^3-5 a^3 B+7 a b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 b^4 \left (a^2-b^2\right )} \\ & = \frac {a^2 \left (3 a^2 A b-5 A b^3-5 a^3 B+7 a b^2 B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{(a-b) b^4 (a+b)^2 d}-\frac {\left (3 a A b-5 a^2 B+2 b^2 B\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {a (A b-a B) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} (b+a \sec (c+d x))}+\frac {\left (\left (3 a^2 A b-2 A b^3-5 a^3 B+4 a b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 b^3 \left (a^2-b^2\right )}-\frac {\left (\left (9 a^3 A b-12 a A b^3-15 a^4 B+16 a^2 b^2 B+2 b^4 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 b^4 \left (a^2-b^2\right )} \\ & = \frac {\left (3 a^2 A b-2 A b^3-5 a^3 B+4 a b^2 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{b^3 \left (a^2-b^2\right ) d}-\frac {\left (9 a^3 A b-12 a A b^3-15 a^4 B+16 a^2 b^2 B+2 b^4 B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 b^4 \left (a^2-b^2\right ) d}+\frac {a^2 \left (3 a^2 A b-5 A b^3-5 a^3 B+7 a b^2 B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{(a-b) b^4 (a+b)^2 d}-\frac {\left (3 a A b-5 a^2 B+2 b^2 B\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {a (A b-a B) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} (b+a \sec (c+d x))} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 6.84 (sec) , antiderivative size = 701, normalized size of antiderivative = 1.93 \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {\frac {2 \left (-3 a^2 A b+6 A b^3+5 a^3 B-8 a b^2 B\right ) \cos ^2(c+d x) \left (\operatorname {EllipticF}\left (\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right )-\operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right )\right ) (b+a \sec (c+d x)) \sqrt {1-\sec ^2(c+d x)} \sin (c+d x)}{a (a+b \cos (c+d x)) \left (1-\cos ^2(c+d x)\right )}+\frac {2 \left (-12 a A b^2+8 a^2 b B+4 b^3 B\right ) \cos ^2(c+d x) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) (b+a \sec (c+d x)) \sqrt {1-\sec ^2(c+d x)} \sin (c+d x)}{b (a+b \cos (c+d x)) \left (1-\cos ^2(c+d x)\right )}+\frac {\left (-9 a^2 A b+6 A b^3+15 a^3 B-12 a b^2 B\right ) \cos (2 (c+d x)) (b+a \sec (c+d x)) \left (-4 a b+4 a b \sec ^2(c+d x)-4 a b E\left (\left .\arcsin \left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {\sec (c+d x)} \sqrt {1-\sec ^2(c+d x)}+2 (2 a-b) b \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {\sec (c+d x)} \sqrt {1-\sec ^2(c+d x)}-4 a^2 \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {\sec (c+d x)} \sqrt {1-\sec ^2(c+d x)}+2 b^2 \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {\sec (c+d x)} \sqrt {1-\sec ^2(c+d x)}\right ) \sin (c+d x)}{a b^2 (a+b \cos (c+d x)) \left (1-\cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)} \left (2-\sec ^2(c+d x)\right )}}{12 (a-b) b^2 (a+b) d}+\frac {\sqrt {\sec (c+d x)} \left (\frac {a^2 (-A b+a B) \sin (c+d x)}{b^3 \left (a^2-b^2\right )}-\frac {a^3 A b \sin (c+d x)-a^4 B \sin (c+d x)}{b^3 \left (-a^2+b^2\right ) (a+b \cos (c+d x))}+\frac {B \sin (2 (c+d x))}{3 b^2}\right )}{d} \]

[In]

Integrate[(A + B*Cos[c + d*x])/((a + b*Cos[c + d*x])^2*Sec[c + d*x]^(5/2)),x]

[Out]

-1/12*((2*(-3*a^2*A*b + 6*A*b^3 + 5*a^3*B - 8*a*b^2*B)*Cos[c + d*x]^2*(EllipticF[ArcSin[Sqrt[Sec[c + d*x]]], -
1] - EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1])*(b + a*Sec[c + d*x])*Sqrt[1 - Sec[c + d*x]^2]*Sin[c +
 d*x])/(a*(a + b*Cos[c + d*x])*(1 - Cos[c + d*x]^2)) + (2*(-12*a*A*b^2 + 8*a^2*b*B + 4*b^3*B)*Cos[c + d*x]^2*E
llipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*(b + a*Sec[c + d*x])*Sqrt[1 - Sec[c + d*x]^2]*Sin[c + d*x])/
(b*(a + b*Cos[c + d*x])*(1 - Cos[c + d*x]^2)) + ((-9*a^2*A*b + 6*A*b^3 + 15*a^3*B - 12*a*b^2*B)*Cos[2*(c + d*x
)]*(b + a*Sec[c + d*x])*(-4*a*b + 4*a*b*Sec[c + d*x]^2 - 4*a*b*EllipticE[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[
Sec[c + d*x]]*Sqrt[1 - Sec[c + d*x]^2] + 2*(2*a - b)*b*EllipticF[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c +
d*x]]*Sqrt[1 - Sec[c + d*x]^2] - 4*a^2*EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*S
qrt[1 - Sec[c + d*x]^2] + 2*b^2*EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[1 -
 Sec[c + d*x]^2])*Sin[c + d*x])/(a*b^2*(a + b*Cos[c + d*x])*(1 - Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]]*(2 - Sec[c
 + d*x]^2)))/((a - b)*b^2*(a + b)*d) + (Sqrt[Sec[c + d*x]]*((a^2*(-(A*b) + a*B)*Sin[c + d*x])/(b^3*(a^2 - b^2)
) - (a^3*A*b*Sin[c + d*x] - a^4*B*Sin[c + d*x])/(b^3*(-a^2 + b^2)*(a + b*Cos[c + d*x])) + (B*Sin[2*(c + d*x)])
/(3*b^2)))/d

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1065\) vs. \(2(421)=842\).

Time = 11.30 (sec) , antiderivative size = 1066, normalized size of antiderivative = 2.94

method result size
default \(\text {Expression too large to display}\) \(1066\)

[In]

int((A+B*cos(d*x+c))/(a+cos(d*x+c)*b)^2/sec(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4*a^2/b^3*(3*A*b-4*B*a)/(-2*a*b+2*b^2)*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Elli
pticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))-2*a^3*(A*b-B*a)/b^4*(-1/a*b^2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*s
in(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-1/2/a/(a+b)*(sin(1/2*d*x+1/2*c)
^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos
(1/2*d*x+1/2*c),2^(1/2))-1/2/(a^2-b^2)*b/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*
sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2/(a^2-b^2)*b/a*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)
*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2
*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b
/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2
)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))-2/3/
b^4/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*b^2+6*A
*a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^2+2*B*cos
(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b^2-9*B*a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-B*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ell
ipticF(cos(1/2*d*x+1/2*c),2^(1/2))-6*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE
(cos(1/2*d*x+1/2*c),2^(1/2))*a*b))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^2/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))**2/sec(d*x+c)**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^2/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^2*sec(d*x + c)^(5/2)), x)

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^2/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^2*sec(d*x + c)^(5/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(5/2)*(a + b*cos(c + d*x))^2),x)

[Out]

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(5/2)*(a + b*cos(c + d*x))^2), x)